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Nonequilibrium Kkinetics of a disordered Luttinger liquid
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We develop a kinetic theory for strongly correlated disordered one-dimensional electron systems out of
equilibrium within the Luttinger liquid model. In the absence of inhomogeneities, the model exhibits no
relaxation to equilibrium. We derive kinetic equations for electron and plasmon distribution functions in the
presence of impurities and calculate the equilibration rate ;. Remarkably, for not too low temperature and bias
voltage, yg is given by the elastic backscattering rate 7y: the ratio yg/ y~1 is independent of the strength of

electron-electron interaction, temperature, and bias.
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Interacting electrons in one dimension (1D) (Ref. 1) have
become a focus of interest in nanophysics from both the
fundamental and applied perspectives. Recent technological
advances have made it possible to systematically study the
transport properties of a variety of ultranarrow wires; in par-
ticular, carbon nanotubes? and semiconductor nanowires.’
From the fundamental point of view, much of the fascination
with physics of 1D systems is driven by the fact that
electron-electron (e-e) interactions in 1D geometry are quali-
tatively significant, transforming the electron gas into a Lut-
tinger liquid (LL).' This strongly correlated state of matter is
commonly described in terms of bosonic elementary excita-
tions.

A conceptually nontrivial aspect of the non-Fermi liquid
nature of a LL concerns its behavior at nonequilibrium, e.g.,
when a finite bias voltage is applied to the wire (for a recent
experiment see Ref. 4). A homogeneous LL is completely
integrable and as such does not exhibit any relaxation to
equilibrium: an excited state will never decay to the state
characterized by temperature 7. Quite remarkably, a finite
quantum lifetime of fermionic excitations due to e-e interac-
tions in a homogeneous LL does not translate into any in-
elastic e-e scattering:® the allowed energy transfer is exactly
zero. This is in stark contrast to electron liquids in higher
dimensions, where the characteristic energy transfer is 7. Re-
laxation to equilibrium due to e-e collisions in a LL is thus
only possible if momentum conservation is broken by inho-
mogeneities. Of central importance is therefore the
question—essentially unanswered—of how the equilibration
in a LL occurs in the presence of a random backscattering
potential. This is the subject of this work.

So far, advances in dealing with a LL off equilibrium have
been focused on a “mechanical” approach, i.e., on solving
the equations of motion “as exactly as possible.” Efforts,
based on the bosonization approach, have been centered
around the nonlinear conductance of a LL containing a single
compact scatterer.® However, the line of research relying on
the exact integrability cannot possibly be much extended be-
yond the single-scatterer case (for two tunneling barriers in a
LL, a nonequilibrium distribution of plasmons was studied
by means of the master equation, see Ref. 7). Also, impor-
tantly, the conventional bosonization! is designed for equi-
librium boundary conditions. An alternative is to preserve
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dynamics of both bosonic and fermionic degrees of
freedom,®? as it is done in the functional bosonization ap-
proach (see Ref. 10 for a review).

Our purpose here is to develop a kinetic approach to non-
equilibrium phenomena in a disordered LL, by formulating
kinetic equations for distribution functions. Within this ap-
proach, one has to introduce the distribution functions of not
only bosonic but also fermionic excitations, similarly to
higher dimensions.''> Our main result is a set of kinetic
equations which describe (i) inelastic e-e scattering, medi-
ated by virtual plasmons, and (ii) creation/annihilation of real
plasmons; both processes being only triggered by scattering
off disorder. We calculate a key quantity in nonequilibrium
problems: the energy relaxation rate yz. In a remarkable de-
parture from Fermi liquids, g in a LL at not too low 7 turns
out to be given by the elastic-scattering rate 7.

We study interacting electrons in a single-channel disor-
dered quantum wire within the LL model:' the electron dis-
persion relation is linear (with the velocity vy) and interac-
tions yield only forward e-e scattering (characterized by the
dimensionless constant a=V;/27vy, where V; is the zero-
momentum Fourier component of the interaction potential).
We consider both spinless (7=1) and spinful (7=2) models.
Our approach is based on the “quasiclassical” real-time elec-
tron Green’s function at coinciding spatial points
&(x,t,,1,),13 widely used in the nonequilibrium theory of me-
soscopic transport. The “hat” means that ¢ is a matrix in the
Keldysh, chirality (u= = for right/left-moving electrons) and
(possibly) spin (s=1,]) spaces. In what follows we use the
Pauli matrices 7, o, and s that act in the chirality, Keldysh,
and spin spaces, respectively.

The quasiclassical Green’s function satisfies the condition
g°8=408(t,—1,), where the “dot” denotes the convolution in
the full (chirality X spin X Keldysh X time) space. This con-
straint enables us to describe the wire by the action that
reproduces the averaged over disorder equation of motion for
g as its saddle point. The way to derive such an action is
similar to that in the ballistic sigma model in higher
dimensions.!* To account for the Coulomb interaction, one

introduces the Hubbard-Stratonovich field é&(x,t):q&l
+0,.¢, on the Keldysh contour,”® where the “classical” and
“quantum” fields ¢, are diagonal matrices in the chirality
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and spin spaces. Then the action takes the form®
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Here v, is the bare elastic rate of backscattering off a random
static potential, g,=diag(g;,—g,) corresponds to the saddle
point of the action of the noninteracting problem, and g
=T%,T '=diag(g*,—g"). The unitary transformation 7 (diag-
onal in the chirality X spin space) parameterizes fluctuations
around g, due to fluctuations of ¢(x,7). The interaction of
fermions of the same chirality and spin is included in the
shift of the Fermi velocity vyp=vp+V;/27.5 The last term in
Eq. (1) with \A/alelZ]crxTx[l+2(7]—l)sx] accounts for true
interactions. A similar (replicated imaginary-time) action for
a disordered LL at equilibrium was proposed in Ref. 16.

Starting from the effective Keldysh action [Eq. (1)], we
use the standard procedure'>!7 to derive the kinetic equa-
tions. We proceed at one-loop order with respect to the ef-
fective interaction, which is equivalent to the “dirty random-
phase approximation” (dRPA).> The one-loop derivation is
controlled by the parameters y/max{T,eU}<1 and a<l1,
which is assumed in the rest of the paper (U is the bias
voltage). We also disregard the localization effects.>!® For a
wire of length L=uv/ v, this limits the applicability of what
follows to max{T,eU}>T,=vy/a*".

Within the dRPA, we expand the action [Eq. (1)] in fast
(on a scale of the relaxation time for the kinetic equation)
quadratic fluctuations of ¢ around the “slow” semiclassical
saddle point g =(0.+0,)8(t—1,)-20,/"x,1;,1;). The
electron distribution function f¥(x,r) at given energy € is
defined via the Wigner transform of f*(x,z,,1,) and is yet to
be found from the kinetic equations. In this way we obtain
the Gaussian action with the propagator \A/=(\A/E1 —I1)~!. Here
M=0(3,Do, - 1)/2mv}, is the polarization operator with D
being the electron-hole (e-h) propagator damped by disorder.
The retarded part of D is given by Dy'=—i(w—7v5q)+ (1
—1,)/2 while the kinetic part Dy is expressed (see below) in
terms of f% via

1
= oo [adp L vl @

To derive the kinetic equation for electrons, we average
out the fast fluctuations in the equation of motion for
&(x,t,,t,) with the dRPA action, which yields'

Yt 711’161

(0 + popd)fe == ———"(fe —fF) +Sti(e).  (3)

The collision integral St‘’, describes inelastic electron scat-
tering due to interaction with the bosonic bath,
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Sté‘_b=zfdw1“”(w) ol =D =fEA=fC )], (4)

while v, accounts for the additional'® renormalization of

the static disorder due to the inelastic scattering,

Yinel _

) _fdwl+_(w)(l _fe—w+fe+w)~ (5)

Here f.=(fi+f.)/2 and [*"(w) is the rate of emission of
energy per unit interval of w, accompanied by scattering u
— v, which is given by

i [ dg_, Y
I,U«V(a)) = ;f ;TV;‘fH(w,q)Re D% (w,q). (6)

In the integrand of Eq. (6), there are four poles, ¢
= * (1 £iy/2w)/v}, inherited from Re Dy, which are only
slightly damped by disorder in the limit w> 7. They corre-
spond to e-h pair excitations described by the renormalized
Fermi velocity vy.. Four more poles ¢= * w(1 *iy/2w)/u,
associated with the “greater” part of the effective interaction
with parallel spins V-, correspond to the collective plasmon
mode of the clean LL, moving with velocity u=vg(1

+ma)"2. In the spinful model, V contains an extra mode—
spinon—propagating with velocity v.'8 Importantly, the e-h
and collective excitations at w>T; are well resolved from
each other and should be treated separately while in the op-
posite limit, w<<T;, the disorder-induced quantum uncer-
tainty makes them indistinguishable. We now proceed by re-
lating V%, to the distribution functions.

In the limit w<<T), the Keldysh, retarded, and advanced
parts of interaction satisfy Vg=VyIIV,. Then the general
result for the emission rate can be represented in the form
I‘“’(w):EaﬁwlC" 1'(w)N”‘B , where the collision kernel ICf:/’;(w)
describes inelastic spin-conserving electron scattering u
— v with energy transfer w to the electron and hole having
the chirality a and B. For the total collision kernel I
:%E w/Kt,, we obtain

o= 22

In the spinless model, the kernel K(w) is determined by pro-
cesses described by the Feynman diagrams in Fig. 1(a) at
y<w<aT, and Fig. 1(b) at aT;<w<T,. In the spinful
case, collisions between electrons of the same chirality but
opposite spin [Fig. 1(c)] give the main contribution to K(w)
for all w<<T,. The frequency dependence and the asymptotes
of K(w) are shown in Fig. 2.

In the case of w>T), we consider the contributions to
=17+ 1"+ 12 from the collective (plasmon/spinon) and
e-h poles separately, see Figs. 1(d)-1(f). Because of the split-
ting of the e-h, plasmon, and spinon poles, the collision in-
tegral would be nonlocal'! if expressed solely in terms of the
e-h distribution functions N*” [see Eq. (2)]. By introducing
the plasmon/spinon distribution functions n}(w) we can ex-
press the emission rate of the bosonic excitations (b=p,s) in
the local form (v,=u, v,=vp),

2 Re D*"(w,q)Im Vi(w,q).  (7)
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(a)
FIG. 1. Scattering processes corresponding to the collision ker-
nels K(w) and L£(w). Thin wavy lines: bare interaction V;. Solid
wavy lines: dRPA interaction propagator V. The triangles (A) and

rhombi (#) mean the Keldysh part of the electron and boson
Green’s functions, respectively.

@h@

I (w) = 2 oLy (o)[1+n;(w)], (8)

where the collision kernels £ have the scaling form L
=(y/20?)(vy/ v;)AL and the A factors read

-A+Mp—[77(v;_UF) +UF * u]/nv;’

AL == Of—vplvy, A =(n-1)8,,8,,.  (9)

In turn, n}(w) satisfies the kinetic equation

(0, + pvyd)ng () = = yynj(w) + 72 ASENGE, (10)

where y,=y(vp/vy) and we used the relation D%’
=2 Re DR"(1+2N""). This kinetic equation describes the
decay/creation of plasmons and spinons in/from e-h pairs.
Finally, the e-h pole in the emission rate [Eq. (6)] gives
14 (0)=6,,(y/ 0)Ni. Note that the collision kernels £,
=L="y/ w2 do not contain a as a small parameter. These
most efficient relaxation processes involve electrons and
bosons within the same chiral branch: their rates are reso-
nantly enhanced since v, and v are close to each other. As a
result, @ appears in the combination a?/[v;—v,|7~ 1. It can
also be shown that the total kernel, L=L,,
+(1/2)2 pva, »LhY, is equal to the asymptotic value of K(w)
[Eq. (7)] in the limit 0> T).
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FIG. 2. (Color online) Frequency dependence of the collision
kernels for the spinless and spinful models [Eq. (7)] for @=0.1.
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FIG. 3. (Color online) Electron distribution function in the
middle of a quantum wire of length L biased by eU=40T, for T
=T,/2 (where v is the elastic backscattering rate). The solid lines
correspond to yrp=0.25, 0.5, 1, 2, 4, and 8, where TD=L/U;. The
dashed curve shows the limiting Fermi distribution.

We now turn to the energy-relaxation rate 7y in the limit
of weak nonequilibrium. Linearizing the electron and boson
kinetic equations, we estimate 7y from the total?® collision
kernel (Fig. 2)

T
~ rlf dwe’K(w) ~ T*K(T). (11)
0

The characteristic w for g is of order T. Since K(w)
=21v/w? for 0> T, v at T>T, does not depend on « and
is given by the backscattering rate,

(a, apart from the renormalization of y,'° enters only through
the condition on 7 so that the result is also valid for the
long-range Coulomb interaction). At T<T,, Eq. (12) is only
valid for short wires of length L <uv/y—otherwise the sys-
tem is localized—and shows that a full equilibration then has
no time to develop. Note that y; for spinful and spinless
electrons turn out to be parametrically the same, in contrast
to the weak-localization phase-relaxation rate 7¢.18

In the limit of strong nonequilibrium, we solve Egs. (3)
and (10) numerically to obtain the distribution function of
electrons f, in a wire biased by a voltage U>T/e, where T is
the temperature in the leads, as a function of the distance to
the contacts (f, shows up directly in tunneling spectroscopy;*
for experiments on multichannel wires, see, e.g., Ref. 21).
The result, shown in Fig 3, confirms the estimate [Eq (12)]:
the scale of 7,=L/v}- on which f, equilibrates is y I, despite
a<<1. For small ¢, the inelastic processes 1nv01v1ng opposite
chiralites (£ and £]7), as well as the backscattering of
plasmons on the boundaries,”>?> can be neglected: the
curves in Fig. 3 are thus « independent. At 7,> y!, f. ap-
proaches the Fermi distribution with the temperature 7,
=v3eU/4.

As follows from Egs. (10) and (12), the thermalization of
electrons occurs at the same time scale as the lifetime of
bosons. This elucidates a conceptually important point: bo-
son decay is a source of the inelastic relaxation of electrons.
Indeed, in the homogeneous case, the combination
Re D Im V in Eq. (7) yields zero energy transfer in the e-e
scattering.> However, any plasmon scattering broadens the
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peak in Im V, thus allowing for a finite transfer (even if D
remains free—no electron backscattering).?* This is true, in
particular, in an inhomogeneous LL without impurities but
with a nonuniform interaction a(x).2>?

In a disordered LL, the spectral function of dRPA bosons
is characterized by the rate y,== 7 due to the elastic scatter-
ing off impurities.> One sees from Eq. (10) that out of equi-
librium [when n*(w)# N*] the boson scattering is repre-
sented entirely as the creation/annihilation of e-h pairs. As a
result, the inverse process—the inelastic electron scattering
due to the emission/absorption of bosonic excitations—is
characterized by the same rate, yz~ y. Impurities induce
also the anharmonic decay of plasmons as well as their in-
elastic scattering on each other. These processes have been
neglected as higher-loop corrections to the dRPA: their rates
are much smaller than ;. It is the latter that gives the ther-
malization rate for the full bosonic distribution function n(w)
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in Eq. (10) due to the coupling (through N,,) to the fermionic
function f..

In conclusion, we have formulated the analytical frame-
work for disordered LLs out of equilibrium, based on the
kinetic equations for the boson and electron distribution
functions. We have found the equilibration rate, which, re-
markably, coincides with the elastic-scattering rate. The ki-
netic approach developed here is particularly convenient for
studying heat transport and current noise in strongly corre-
lated disordered 1D systems.?®
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